Commit fcc44504 authored by zhiyang.zhou's avatar zhiyang.zhou

minor changes

parent 5bc3eadd
...@@ -4,19 +4,19 @@ import os ...@@ -4,19 +4,19 @@ import os
import torch.utils.data import torch.utils.data
import torchvision.transforms as transforms import torchvision.transforms as transforms
from torch import optim from torch import optim
from torchvision import datasets import numpy as np
import torch.nn.functional as F import torch.nn.functional as F
from img_dataset import Image_DataSet from img_dataset import Image_DataSet
from models import wideresnet, resnet from models import wideresnet, resnet
parser = argparse.ArgumentParser(description='PyTorch DenseNet Training') parser = argparse.ArgumentParser(description='PyTorch DenseNet Training')
parser.add_argument('--model_name', default='wide_resnet-34x10', parser.add_argument('--model_name', default='resnet-50',
help='model name, cifar-10 models: wide_resnet-34x10, cifar-100 models: resnet-50, resnet-101,' help='model name, cifar-10 models: wide_resnet-34x10, cifar-100 models: resnet-50, resnet-101,'
'resnet-152') 'resnet-152')
parser.add_argument('--gpuid', default='0', type=str, help='which gpu to use') parser.add_argument('--gpuid', default='0', type=str, help='which gpu to use')
parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('-b', '--batch_size', default=64, type=int, help='mini-batch size (default: 64)') parser.add_argument('-b', '--batch_size', default=2, type=int, help='mini-batch size (default: 64)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate') parser.add_argument('--lr', type=float, default=0.1, metavar='LR', help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum')
parser.add_argument('--weight_decay', '--wd', default=2e-4, type=float, metavar='W') parser.add_argument('--weight_decay', '--wd', default=2e-4, type=float, metavar='W')
...@@ -46,8 +46,8 @@ normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9] ...@@ -46,8 +46,8 @@ normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]
transform_train = transforms.Compose([ transform_train = transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.ToPILImage(), transforms.ToPILImage(),
transforms.RandomResizedCrop((224, 168)), transforms.RandomResizedCrop((224, 224)),
transforms.RandomCrop((224, 168), padding=14), # transforms.RandomCrop((224, 224), padding=14),
transforms.RandomHorizontalFlip(), transforms.RandomHorizontalFlip(),
transforms.ToTensor(), transforms.ToTensor(),
# normalizer # normalizer
...@@ -93,7 +93,7 @@ def train(args, model, train_loader, optimizer, epoch): ...@@ -93,7 +93,7 @@ def train(args, model, train_loader, optimizer, epoch):
# calculate robust loss # calculate robust loss
model.train() model.train()
nat_logits = model(data) nat_logits = model(data)
cur_batch_size = len(data) cur_batch_size = len(y)
loss = (1.0 / cur_batch_size) * F.cross_entropy(nat_logits, y) loss = (1.0 / cur_batch_size) * F.cross_entropy(nat_logits, y)
loss.backward() loss.backward()
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment