Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
T
tongue-diagnosis
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
zhiyang.zhou
tongue-diagnosis
Commits
fcc44504
Commit
fcc44504
authored
Jul 08, 2021
by
zhiyang.zhou
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
minor changes
parent
5bc3eadd
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
train_tongue_diagnosis.py
train_tongue_diagnosis.py
+6
-6
No files found.
train_tongue_diagnosis.py
View file @
fcc44504
...
@@ -4,19 +4,19 @@ import os
...
@@ -4,19 +4,19 @@ import os
import
torch.utils.data
import
torch.utils.data
import
torchvision.transforms
as
transforms
import
torchvision.transforms
as
transforms
from
torch
import
optim
from
torch
import
optim
from
torchvision
import
datasets
import
numpy
as
np
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
img_dataset
import
Image_DataSet
from
img_dataset
import
Image_DataSet
from
models
import
wideresnet
,
resnet
from
models
import
wideresnet
,
resnet
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch DenseNet Training'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'PyTorch DenseNet Training'
)
parser
.
add_argument
(
'--model_name'
,
default
=
'
wide_resnet-34x1
0'
,
parser
.
add_argument
(
'--model_name'
,
default
=
'
resnet-5
0'
,
help
=
'model name, cifar-10 models: wide_resnet-34x10, cifar-100 models: resnet-50, resnet-101,'
help
=
'model name, cifar-10 models: wide_resnet-34x10, cifar-100 models: resnet-50, resnet-101,'
'resnet-152'
)
'resnet-152'
)
parser
.
add_argument
(
'--gpuid'
,
default
=
'0'
,
type
=
str
,
help
=
'which gpu to use'
)
parser
.
add_argument
(
'--gpuid'
,
default
=
'0'
,
type
=
str
,
help
=
'which gpu to use'
)
parser
.
add_argument
(
'--no_cuda'
,
action
=
'store_true'
,
default
=
False
,
help
=
'disables CUDA training'
)
parser
.
add_argument
(
'--no_cuda'
,
action
=
'store_true'
,
default
=
False
,
help
=
'disables CUDA training'
)
parser
.
add_argument
(
'-b'
,
'--batch_size'
,
default
=
64
,
type
=
int
,
help
=
'mini-batch size (default: 64)'
)
parser
.
add_argument
(
'-b'
,
'--batch_size'
,
default
=
2
,
type
=
int
,
help
=
'mini-batch size (default: 64)'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.1
,
metavar
=
'LR'
,
help
=
'learning rate'
)
parser
.
add_argument
(
'--lr'
,
type
=
float
,
default
=
0.1
,
metavar
=
'LR'
,
help
=
'learning rate'
)
parser
.
add_argument
(
'--momentum'
,
type
=
float
,
default
=
0.9
,
metavar
=
'M'
,
help
=
'SGD momentum'
)
parser
.
add_argument
(
'--momentum'
,
type
=
float
,
default
=
0.9
,
metavar
=
'M'
,
help
=
'SGD momentum'
)
parser
.
add_argument
(
'--weight_decay'
,
'--wd'
,
default
=
2e-4
,
type
=
float
,
metavar
=
'W'
)
parser
.
add_argument
(
'--weight_decay'
,
'--wd'
,
default
=
2e-4
,
type
=
float
,
metavar
=
'W'
)
...
@@ -46,8 +46,8 @@ normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]
...
@@ -46,8 +46,8 @@ normalizer = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]
transform_train
=
transforms
.
Compose
([
transform_train
=
transforms
.
Compose
([
transforms
.
ToTensor
(),
transforms
.
ToTensor
(),
transforms
.
ToPILImage
(),
transforms
.
ToPILImage
(),
transforms
.
RandomResizedCrop
((
224
,
168
)),
transforms
.
RandomResizedCrop
((
224
,
224
)),
transforms
.
RandomCrop
((
224
,
168
),
padding
=
14
),
# transforms.RandomCrop((224, 224
), padding=14),
transforms
.
RandomHorizontalFlip
(),
transforms
.
RandomHorizontalFlip
(),
transforms
.
ToTensor
(),
transforms
.
ToTensor
(),
# normalizer
# normalizer
...
@@ -93,7 +93,7 @@ def train(args, model, train_loader, optimizer, epoch):
...
@@ -93,7 +93,7 @@ def train(args, model, train_loader, optimizer, epoch):
# calculate robust loss
# calculate robust loss
model
.
train
()
model
.
train
()
nat_logits
=
model
(
data
)
nat_logits
=
model
(
data
)
cur_batch_size
=
len
(
data
)
cur_batch_size
=
len
(
y
)
loss
=
(
1.0
/
cur_batch_size
)
*
F
.
cross_entropy
(
nat_logits
,
y
)
loss
=
(
1.0
/
cur_batch_size
)
*
F
.
cross_entropy
(
nat_logits
,
y
)
loss
.
backward
()
loss
.
backward
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment