Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
C
ciecc-agent
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wangning
ciecc-agent
Commits
bbed8548
Commit
bbed8548
authored
Jan 21, 2026
by
wangning
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix 智能体知识库 提示词
parent
6c04f4ff
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
231 additions
and
17 deletions
+231
-17
workspace.xml
.idea/workspace.xml
+23
-13
ChatConstants.java
.../pro/spss/server/agent/domain/constant/ChatConstants.java
+1
-1
ChatServiceImpl.java
...pss/server/agent/service/chatService/ChatServiceImpl.java
+5
-1
DataSummaryUtil.java
...ain/java/pro/spss/server/agent/utils/DataSummaryUtil.java
+2
-2
algo_suggest.txt
src/main/resources/promptwords/algosuggest/algo_suggest.txt
+153
-0
algo_suggest_260118.txt
...resources/promptwords/algosuggest/algo_suggest_260118.txt
+0
-0
algo_suggest_260119.txt
...resources/promptwords/algosuggest/algo_suggest_260119.txt
+0
-0
algo_suggest_260121.txt
...resources/promptwords/algosuggest/algo_suggest_260121.txt
+0
-0
algo_knowledge5.jsonl
.../resources/testcases/algo_knowledge/algo_knowledge5.jsonl
+47
-0
No files found.
.idea/workspace.xml
View file @
bbed8548
...
...
@@ -4,17 +4,17 @@
<option
name=
"autoReloadType"
value=
"SELECTIVE"
/>
</component>
<component
name=
"ChangeListManager"
>
<list
default=
"true"
id=
"26f8285c-12a3-40dc-b957-23c37b8f3c67"
name=
"Changes"
comment=
"fix"
>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge4.jsonl"
afterDir=
"false"
/>
<list
default=
"true"
id=
"26f8285c-12a3-40dc-b957-23c37b8f3c67"
name=
"Changes"
comment=
"fix 智能体知识库 问题"
>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algosuggest/algo_suggest.txt"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge5.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/.idea/workspace.xml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/.idea/workspace.xml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/constant/ChatConstants.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/constant/ChatConstants.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/
service/sessionService/ChatSessionManager.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager
.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/
utils/DataSummaryUtil.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/utils/DataSummaryUtil
.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/application-wn.yml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/application-wn.yml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge1.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge1.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge2.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge2.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge3.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge3.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm_bak.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm_bak.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algosuggest/algo_suggest_260121.txt"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260118"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algosuggest/algo_suggest_260118.txt"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260119"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algosuggest/algo_suggest_260119.txt"
afterDir=
"false"
/>
</list>
<option
name=
"SHOW_DIALOG"
value=
"false"
/>
<option
name=
"HIGHLIGHT_CONFLICTS"
value=
"true"
/>
...
...
@@ -43,7 +43,7 @@
"Spring Boot.Application.executor": "Debug",
"git-widget-placeholder": "master",
"kotlin-language-version-configured": "true",
"last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/algo_
suggest_request
",
"last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/algo_
knowledge
",
"project.structure.last.edited": "Project",
"project.structure.proportion": "0.15",
"project.structure.side.proportion": "0.21954022",
...
...
@@ -52,13 +52,14 @@
}]]>
</component>
<component
name=
"RecentsManager"
>
<key
name=
"CopyFile.RECENT_KEYS"
>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_knowledge"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\promptwords\algosuggest"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_suggest_request"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\test_result"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\promptwords"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources"
/>
</key>
<key
name=
"MoveFile.RECENT_KEYS"
>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\promptwords"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_suggest_request"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_knowledge"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases"
/>
...
...
@@ -109,12 +110,21 @@
<option
name=
"project"
value=
"LOCAL"
/>
<updated>
1768958069929
</updated>
</task>
<option
name=
"localTasksCounter"
value=
"2"
/>
<task
id=
"LOCAL-00002"
summary=
"fix 智能体知识库 问题"
>
<option
name=
"closed"
value=
"true"
/>
<created>
1768978168054
</created>
<option
name=
"number"
value=
"00002"
/>
<option
name=
"presentableId"
value=
"LOCAL-00002"
/>
<option
name=
"project"
value=
"LOCAL"
/>
<updated>
1768978168054
</updated>
</task>
<option
name=
"localTasksCounter"
value=
"3"
/>
<servers
/>
</component>
<component
name=
"VcsManagerConfiguration"
>
<MESSAGE
value=
"fix"
/>
<option
name=
"LAST_COMMIT_MESSAGE"
value=
"fix"
/>
<MESSAGE
value=
"fix 智能体知识库 问题"
/>
<option
name=
"LAST_COMMIT_MESSAGE"
value=
"fix 智能体知识库 问题"
/>
</component>
<component
name=
"XDebuggerManager"
>
<watches-manager>
...
...
src/main/java/pro/spss/server/agent/domain/constant/ChatConstants.java
View file @
bbed8548
...
...
@@ -25,7 +25,7 @@ public class ChatConstants {
public
static
final
String
MESSAGE
=
"message"
;
public
static
final
String
USER_PROMPT
=
"\n
\n
【用户需求】\n"
;
public
static
final
String
USER_PROMPT
=
"\n【用户需求】\n"
;
public
static
final
String
DATA_STATUS
=
"【当前状态】"
;
...
...
src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java
View file @
bbed8548
...
...
@@ -131,7 +131,11 @@ public class ChatServiceImpl implements BaseChatService {
private
ResponseMessage
executeTool
(
UserChatMessage
userChatMessage
,
RequestParams
requestParams
,
String
toolName
,
long
startTimestamp
)
{
String
sessionId
=
userChatMessage
.
getUserId
();
JSONArray
historyCopy
=
chatSessionManager
.
getMessages
(
sessionId
);
String
prompt
=
userChatMessage
.
getPrompt
();
String
userPrompt
=
ChatConstants
.
USER_PROMPT
+
userChatMessage
.
getPrompt
();
String
dataPrompt
=
requestParams
.
getDataSummary
();
String
prompt
=
userPrompt
+
'\n'
+
dataPrompt
;
log
.
debug
(
"==================prompt================="
);
log
.
debug
(
prompt
);
ResponseMessage
responseMessage
=
conversationHandler
.
toolExecutor
(
requestParams
,
userChatMessage
,
toolName
,
historyCopy
,
prompt
);
responseMessage
.
setStartTimestamp
(
startTimestamp
);
responseMessage
.
setEndTimestamp
(
System
.
currentTimeMillis
());
...
...
src/main/java/pro/spss/server/agent/utils/DataSummaryUtil.java
View file @
bbed8548
...
...
@@ -14,7 +14,7 @@ import java.util.regex.Pattern;
public
class
DataSummaryUtil
{
private
static
final
Pattern
NUMERIC_PATTERN
=
Pattern
.
compile
(
"^-?\\d+(\\.\\d+)?$"
);
private
static
final
int
MAX_SAMPLE_VALUES_PER_COLUMN
=
3
;
private
static
final
int
MAX_SAMPLE_VALUES_PER_COLUMN
=
10
;
/**
* 将 AgentFileReader 返回的样本原文转换为简明的数据概要文本。
...
...
@@ -54,7 +54,7 @@ public class DataSummaryUtil {
// 生成概要文本
StringBuilder
sb
=
new
StringBuilder
();
sb
.
append
(
"【数据概要】\n"
);
sb
.
append
(
"
\n
【数据概要】\n"
);
sb
.
append
(
"列数:"
).
append
(
colCount
).
append
(
" 样本行:"
).
append
(
dataRowCount
).
append
(
"\n"
);
sb
.
append
(
"列信息:\n"
);
for
(
int
i
=
0
;
i
<
colCount
;
i
++)
{
...
...
src/main/resources/promptwords/algosuggest/algo_suggest.txt
0 → 100644
View file @
bbed8548
一、角色与目标
1. 你的角色
你是一个【算法推荐引擎】。
2. 你的任务
根据用户的自然语言需求:
* 从固定算法库中筛选算法
* 推荐最多 10 个最合适的算法
* 只能用 JSON 输出结果
二、绝对规则(强约束,必须严格遵守)
1. 算法名称必须严格来自算法库的 name 字段
2. 不允许改写、翻译、简化或创造算法名
3. 不在算法库中的算法必须直接删除
4. 按 name 全局去重
5. 不允许输出空字符串算法名
6. 不允许输出重复算法名
7. 除 JSON 外不允许输出任何文字
8. 无论需求是否清晰,输出必须是合法 JSON
9. 推荐算法数量 ≤ 10 个
三、推荐流程
(一)解析用户输入
读取:
1. 用户的自然语言需求
2. 数据概要信息(字段、类型、样本量等)
(二)构建用户标签
根据用户输入的【用户需求】和【数据概要】,自动构建“用户需求标签”。
需抽取并判断以下六类标签:
1. 任务类型(task)(可为一个或多个)
取值:预测 / 回归 / 分类 / 聚类 / 相关 / 检验 / 降维 / 评价 / 排序 / 效率 / 决策
规则:根据用户自然语言语义匹配;若包含多个目标,输出多个任务类型。
2. 数据类型(data)
取值:时间序列 / 非时间序列
规则:数据中包含明确时间字段(年、月、日、季度、时间戳等)→ 时间序列;否则为非时间序列。
3. 关系类型(relation)
取值:线性 / 非线性 / 不限
规则:用户明确说明则按其指定;否则设为“不限”。
4. 样本规模(sample)
取值:小样本 / 偏小样本 / 不限
规则:用户明确说明则按其指定;否则默认:不限。
5. 复杂度(complexity)
取值:简单 / 复杂
规则:
* 用户强调可解释、简单、易理解 → 简单
* 用户强调高精度、复杂模型、深度学习 → 复杂
* 否则按数据特征判断:
* 样本很小且特征少 → 简单
* 特征多或明显非线性 → 复杂
* 无法判断 → 默认简单
6. 模型特性偏好(property)(可选,多选)
取值来自算法库的 property 字段。
规则:用户有明确偏好则映射;无偏好则设为:不限。
输出要求:
仅输出结果,不输出过程。格式必须为:
【用户需求标签】
{"task":xxx,"data":xxx,"relation":xxx,"sample":xxx,"complexity":xxx,"property":xxx}
(三)加载算法知识库
加载算法库中所有算法及其标签,用于与“用户需求标签”进行匹配。
每个算法需包含以下字段:
* task / data / relation / sample / complexity / property
规范:
1. 字段含义与用户需求标签完全一致
2. 加载结果应可直接用于规则或相似度匹配
(四)初筛过滤
按硬条件筛选算法:
1. 算法 task 与用户 task 有交集
2. 算法 data 与用户 data 一致
不满足任一条件的算法直接剔除。
(五)匹配评分与过滤(六标签)
在通过初筛的算法上计算匹配分数。
总分 = task分 + data分 + relation分 + sample分 + complexity分 + property分
评分规则:
1. task 分:
* 算法 task == 用户 task → 3
* 有交集 → 2
2. data 分:
* 算法 data == 用户 data → 2
3. relation 分:
* 用户 relation = 不限 → 1
* 否则算法 relation = 用户 relation → 2
* 否则 → 0
4. sample 分:
* 算法 sample 覆盖或等于 用户 sample → 2
* 否则 → 0
5. complexity 分:
* 算法 complexity = 用户 complexity → 2
* 否则 → 0
6. property 分:
* 用户 property = 不限 → 0
* 否则 = |算法 property ∩ 用户 property|
过滤规则:
* 若总分 < 5,则剔除该算法
(六)结果输出
1. 若有推荐结果:按“正常推荐”格式输出
2. 若无算法满足条件:按“模糊需求”格式输出
3. 只输出合法 JSON,不输出任何多余文字
四、输出规范
(一)正常推荐格式
{
"response": "请从以下算法中选择一种:",
"options": ["算法1", "算法2", "算法3"],
"params": []
}
(二)模糊需求格式
{
"response": "您的需求不够明确,请补充您的分析目标是什么",
"options": [],
"params": []
}
算法知识库:
[
{"name":"最小二乘回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["可解释性强","对多重共线性敏感"]},
{"name":"岭回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["抗多重共线性","模型稳定"]},
{"name":"套索回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["特征选择","模型稀疏"]},
{"name":"多项式回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["拟合弯曲关系","易过拟合"]},
{"name":"支持向量机回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"偏小样本","complexity":"复杂","property":["小样本表现好","对参数敏感"]},
{"name":"BP神经网络","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["表达能力强","可解释性弱"]},
{"name":"梯度提升树","task":["回归","分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["精度高","对噪声敏感"]},
{"name":"移动平均法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["平滑波动","对突变反应慢"]},
{"name":"指数平滑法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["重视近期数据","适合短期预测"]},
{"name":"自回归模型(AR)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["依赖历史值","要求平稳"]},
{"name":"滑动平均模型(MA)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["刻画随机扰动","短期效果好"]},
{"name":"自回归滑动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["综合AR和MA","预测能力强"]},
{"name":"差分自回归移动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["处理非平稳序列","建模步骤多"]},
{"name":"灰色模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"小样本","complexity":"简单","property":["小样本适用","抗随机性弱"]},
{"name":"决策树","task":["分类","决策"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"简单","property":["结构直观","易过拟合"]},
{"name":"随机森林","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["稳定性高","计算量大"]},
{"name":"自适应增强算法","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["关注难样本","对噪声敏感"]},
{"name":"判别分析","task":["分类"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["模型简洁","分布假设强"]},
{"name":"二分类逻辑回归","task":["分类","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["概率输出","可解释性好"]},
{"name":"皮尔逊相关分析","task":["相关"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["衡量线性关系","对异常值敏感"]},
{"name":"斯皮尔曼相关分析","task":["相关"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["基于秩次","对异常值不敏感"]},
{"name":"独立样本t检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["比较均值差异","要求正态性"]},
{"name":"正态检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["检验分布形态","对样本量敏感"]},
{"name":"K-均值聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["速度快","对初始中心敏感"]},
{"name":"层次聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"小样本","complexity":"复杂","property":["结构直观","计算量大"]},
{"name":"因子分析","task":["降维","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["提取潜在因子","解释性强"]},
{"name":"主成分分析","task":["降维"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["信息压缩","可解释性弱"]},
{"name":"优劣解距离法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["结果直观","依赖权重"]},
{"name":"秩和比评价法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["计算简单","信息损失多"]},
{"name":"模糊综合评价","task":["评价","排序"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"复杂","property":["处理模糊信息","主观性强"]},
{"name":"数据包络分析(CCR)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬不变","适合同规模对象"]},
{"name":"数据包络分析(BCC)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬可变","区分技术效率"]},
{"name":"柯布-道格拉斯生产函数","task":["效率","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["形式简单","函数假设强"]}
\ No newline at end of file
src/main/resources/promptwords/algo
_suggest_bak260118
→
src/main/resources/promptwords/algo
suggest/algo_suggest_260118.txt
View file @
bbed8548
File moved
src/main/resources/promptwords/algo
_suggest_bak260119
→
src/main/resources/promptwords/algo
suggest/algo_suggest_260119.txt
View file @
bbed8548
File moved
src/main/resources/promptwords/algo
_sugges
t
→
src/main/resources/promptwords/algo
suggest/algo_suggest_260121.tx
t
View file @
bbed8548
File moved
src/main/resources/testcases/algo_knowledge/algo_knowledge5.jsonl
0 → 100644
View file @
bbed8548
[
{"name":"最小二乘回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["可解释性强","对多重共线性敏感"]},
{"name":"岭回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["抗多重共线性","模型稳定"]},
{"name":"套索回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["特征选择","模型稀疏"]},
{"name":"多项式回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["拟合弯曲关系","易过拟合"]},
{"name":"支持向量机回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"偏小样本","complexity":"复杂","property":["小样本表现好","对参数敏感"]},
{"name":"BP神经网络","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["表达能力强","可解释性弱"]},
{"name":"梯度提升树","task":["回归","分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["精度高","对噪声敏感"]},
{"name":"移动平均法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["平滑波动","对突变反应慢"]},
{"name":"指数平滑法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["重视近期数据","适合短期预测"]},
{"name":"自回归模型(AR)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["依赖历史值","要求平稳"]},
{"name":"滑动平均模型(MA)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["刻画随机扰动","短期效果好"]},
{"name":"自回归滑动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["综合AR和MA","预测能力强"]},
{"name":"差分自回归移动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["处理非平稳序列","建模步骤多"]},
{"name":"灰色模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"小样本","complexity":"简单","property":["小样本适用","抗随机性弱"]},
{"name":"决策树","task":["分类","决策"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"简单","property":["结构直观","易过拟合"]},
{"name":"随机森林","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["稳定性高","计算量大"]},
{"name":"自适应增强算法","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["关注难样本","对噪声敏感"]},
{"name":"判别分析","task":["分类"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["模型简洁","分布假设强"]},
{"name":"二分类逻辑回归","task":["分类","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["概率输出","可解释性好"]},
{"name":"皮尔逊相关分析","task":["相关"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["衡量线性关系","对异常值敏感"]},
{"name":"斯皮尔曼相关分析","task":["相关"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["基于秩次","对异常值不敏感"]},
{"name":"独立样本t检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["比较均值差异","要求正态性"]},
{"name":"正态检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["检验分布形态","对样本量敏感"]},
{"name":"K-均值聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["速度快","对初始中心敏感"]},
{"name":"层次聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"小样本","complexity":"复杂","property":["结构直观","计算量大"]},
{"name":"因子分析","task":["降维","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["提取潜在因子","解释性强"]},
{"name":"主成分分析","task":["降维"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["信息压缩","可解释性弱"]},
{"name":"优劣解距离法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["结果直观","依赖权重"]},
{"name":"秩和比评价法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["计算简单","信息损失多"]},
{"name":"模糊综合评价","task":["评价","排序"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"复杂","property":["处理模糊信息","主观性强"]},
{"name":"数据包络分析(CCR)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬不变","适合同规模对象"]},
{"name":"数据包络分析(BCC)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬可变","区分技术效率"]},
{"name":"柯布-道格拉斯生产函数","task":["效率","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["形式简单","函数假设强"]}
]
算法标签体系简要说明
通过标签对算法的适用场景和特性进行结构化描述,用于支持算法自动推荐、条件筛选和规则匹配。
任务类型:说明算法能解决的问题,如预测、回归、分类、排序、聚类、相关、检验、降维、评价、效率等。
数据类型:区分是否为时间序列数据。
关系形式:描述模型刻画关系的方式,包括线性、非线性或不限。
样本规模:表示算法对样本数量的适应程度,如小样本或不限。
复杂度:表示算法实现和计算难度,分为简单或复杂。
通过这些标签,可以将用户需求与算法能力快速匹配,实现智能推荐与筛选。
样本很小、特征少 → 优先简单模型
特征多、关系明显非线性 → 偏向复杂模型
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment