Commit 6c04f4ff authored by wangning's avatar wangning

fix 智能体知识库 问题

parent 2c8526bc
...@@ -4,29 +4,17 @@ ...@@ -4,29 +4,17 @@
<option name="autoReloadType" value="SELECTIVE" /> <option name="autoReloadType" value="SELECTIVE" />
</component> </component>
<component name="ChangeListManager"> <component name="ChangeListManager">
<list default="true" id="26f8285c-12a3-40dc-b957-23c37b8f3c67" name="Changes" comment=""> <list default="true" id="26f8285c-12a3-40dc-b957-23c37b8f3c67" name="Changes" comment="fix">
<change afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/auth/AuthInterceptorConfiguration.java" afterDir="false" /> <change afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge4.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260118" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260119" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge1.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge2.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge3.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/default.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm_bak.jsonl" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/test_result/res1.xlsx" afterDir="false" />
<change afterPath="$PROJECT_DIR$/src/main/resources/testcases/test_result/result.xlsx" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/response/ResponseMessage.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/response/ResponseMessage.java" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/handler/IntentTool.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/handler/IntentTool.java" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager.java" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/utils/DataSummaryUtil.java" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/java/pro/spss/server/agent/utils/DataSummaryUtil.java" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/application-wn.yml" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/application-wn.yml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/resources/application-wn.yml" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/application-wn.yml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/mapper/DaAgentMessageMapper.xml" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/mybatis/mapper/DaAgentMessageMapper.xml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge1.jsonl" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge1.jsonl" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/mapper/DaAgentSessionMapper.xml" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/mybatis/mapper/DaAgentSessionMapper.xml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge2.jsonl" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge2.jsonl" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/mapper/ResultMapper.xml" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/mybatis/mapper/ResultMapper.xml" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge3.jsonl" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge3.jsonl" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/promptwords/0_1.txt" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/promptwords/0_1.txt" afterDir="false" /> <change beforePath="$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm.jsonl" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm.jsonl" afterDir="false" />
<change beforePath="$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm_bak.jsonl" beforeDir="false" afterPath="$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm_bak.jsonl" afterDir="false" />
</list> </list>
<option name="SHOW_DIALOG" value="false" /> <option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" /> <option name="HIGHLIGHT_CONFLICTS" value="true" />
...@@ -52,10 +40,10 @@ ...@@ -52,10 +40,10 @@
"RunOnceActivity.ShowReadmeOnStart": "true", "RunOnceActivity.ShowReadmeOnStart": "true",
"RunOnceActivity.TerminalTabsStorage.copyFrom.TerminalArrangementManager.252": "true", "RunOnceActivity.TerminalTabsStorage.copyFrom.TerminalArrangementManager.252": "true",
"RunOnceActivity.git.unshallow": "true", "RunOnceActivity.git.unshallow": "true",
"Spring Boot.Application.executor": "Run", "Spring Boot.Application.executor": "Debug",
"git-widget-placeholder": "master", "git-widget-placeholder": "master",
"kotlin-language-version-configured": "true", "kotlin-language-version-configured": "true",
"last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/test_result", "last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/algo_suggest_request",
"project.structure.last.edited": "Project", "project.structure.last.edited": "Project",
"project.structure.proportion": "0.15", "project.structure.proportion": "0.15",
"project.structure.side.proportion": "0.21954022", "project.structure.side.proportion": "0.21954022",
...@@ -64,13 +52,15 @@ ...@@ -64,13 +52,15 @@
}]]></component> }]]></component>
<component name="RecentsManager"> <component name="RecentsManager">
<key name="CopyFile.RECENT_KEYS"> <key name="CopyFile.RECENT_KEYS">
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases\test_result" /> <recent name="D:\projects\ciecc-agent\src\main\resources\testcases\algo_suggest_request" />
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases" /> <recent name="D:\projects\ciecc-agent\src\main\resources\testcases" />
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases\test_result" />
<recent name="D:\projects\ciecc-agent\src\main\resources\promptwords" /> <recent name="D:\projects\ciecc-agent\src\main\resources\promptwords" />
<recent name="D:\projects\ciecc-agent\src\main\resources" /> <recent name="D:\projects\ciecc-agent\src\main\resources" />
<recent name="D:\projects\ciecc-agent\src\main\java\pro\spss\server\agent" />
</key> </key>
<key name="MoveFile.RECENT_KEYS"> <key name="MoveFile.RECENT_KEYS">
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases\algo_suggest_request" />
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases\algo_knowledge" />
<recent name="D:\projects\ciecc-agent\src\main\resources\testcases" /> <recent name="D:\projects\ciecc-agent\src\main\resources\testcases" />
<recent name="D:\projects\ciecc-agent\src\main\resources\mybatis" /> <recent name="D:\projects\ciecc-agent\src\main\resources\mybatis" />
</key> </key>
...@@ -111,8 +101,21 @@ ...@@ -111,8 +101,21 @@
<option name="presentableId" value="Default" /> <option name="presentableId" value="Default" />
<updated>1768553899700</updated> <updated>1768553899700</updated>
</task> </task>
<task id="LOCAL-00001" summary="fix">
<option name="closed" value="true" />
<created>1768958069929</created>
<option name="number" value="00001" />
<option name="presentableId" value="LOCAL-00001" />
<option name="project" value="LOCAL" />
<updated>1768958069929</updated>
</task>
<option name="localTasksCounter" value="2" />
<servers /> <servers />
</component> </component>
<component name="VcsManagerConfiguration">
<MESSAGE value="fix" />
<option name="LAST_COMMIT_MESSAGE" value="fix" />
</component>
<component name="XDebuggerManager"> <component name="XDebuggerManager">
<watches-manager> <watches-manager>
<configuration name="SpringBootApplicationConfigurationType"> <configuration name="SpringBootApplicationConfigurationType">
......
...@@ -6,6 +6,7 @@ import org.springframework.beans.factory.annotation.Autowired; ...@@ -6,6 +6,7 @@ import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value; import org.springframework.beans.factory.annotation.Value;
import org.springframework.scheduling.annotation.Async; import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service; import org.springframework.stereotype.Service;
import pro.spss.server.agent.domain.constant.ChatConstants;
import pro.spss.server.agent.domain.enums.ChatStatusEnum; import pro.spss.server.agent.domain.enums.ChatStatusEnum;
import pro.spss.server.agent.domain.enums.ConversationStateEnum; import pro.spss.server.agent.domain.enums.ConversationStateEnum;
import pro.spss.server.agent.domain.enums.CreateWayEnum; import pro.spss.server.agent.domain.enums.CreateWayEnum;
...@@ -81,6 +82,8 @@ public class ChatServiceImpl implements BaseChatService { ...@@ -81,6 +82,8 @@ public class ChatServiceImpl implements BaseChatService {
} }
chatSessionManager.initSession(sessionId, CreateWayEnum.ALGO_FIRST); chatSessionManager.initSession(sessionId, CreateWayEnum.ALGO_FIRST);
JSONArray messages = chatSessionManager.getMessages(sessionId);
messages.add(ChatConstants.createMessage(ChatConstants.ROLE_SYSTEM, initPrompt));
sseService.sendMessage(ResponseMessageType.INIT.getType(), sessionId, userChatMessage.getToken(), initPrompt); sseService.sendMessage(ResponseMessageType.INIT.getType(), sessionId, userChatMessage.getToken(), initPrompt);
return true; return true;
...@@ -127,7 +130,7 @@ public class ChatServiceImpl implements BaseChatService { ...@@ -127,7 +130,7 @@ public class ChatServiceImpl implements BaseChatService {
*/ */
private ResponseMessage executeTool(UserChatMessage userChatMessage, RequestParams requestParams, String toolName, long startTimestamp) { private ResponseMessage executeTool(UserChatMessage userChatMessage, RequestParams requestParams, String toolName, long startTimestamp) {
String sessionId = userChatMessage.getUserId(); String sessionId = userChatMessage.getUserId();
JSONArray historyCopy = new JSONArray(chatSessionManager.getMessages(sessionId)); JSONArray historyCopy = chatSessionManager.getMessages(sessionId);
String prompt = userChatMessage.getPrompt(); String prompt = userChatMessage.getPrompt();
ResponseMessage responseMessage = conversationHandler.toolExecutor(requestParams, userChatMessage, toolName, historyCopy, prompt); ResponseMessage responseMessage = conversationHandler.toolExecutor(requestParams, userChatMessage, toolName, historyCopy, prompt);
responseMessage.setStartTimestamp(startTimestamp); responseMessage.setStartTimestamp(startTimestamp);
......
...@@ -2,6 +2,7 @@ package pro.spss.server.agent.service.sessionService; ...@@ -2,6 +2,7 @@ package pro.spss.server.agent.service.sessionService;
import com.alibaba.fastjson2.JSONArray; import com.alibaba.fastjson2.JSONArray;
import lombok.Getter; import lombok.Getter;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component; import org.springframework.stereotype.Component;
import pro.spss.server.agent.domain.constant.ChatConstants; import pro.spss.server.agent.domain.constant.ChatConstants;
import pro.spss.server.agent.domain.enums.ConversationStateEnum; import pro.spss.server.agent.domain.enums.ConversationStateEnum;
...@@ -25,7 +26,8 @@ public class ChatSessionManager { ...@@ -25,7 +26,8 @@ public class ChatSessionManager {
} }
public void initSession(String sessionId, CreateWayEnum createWay) { public void initSession(String sessionId, CreateWayEnum createWay) {
JSONArray messages = new JSONArray(ChatConstants.SYSTEM_MESSAGES); JSONArray messages = new JSONArray();
messages.add(ChatConstants.createMessage(ChatConstants.ROLE_SYSTEM, ChatConstants.WELCOME_MESSAGE));
chatSessions.put(sessionId, messages); chatSessions.put(sessionId, messages);
RequestParams params = new RequestParams(); RequestParams params = new RequestParams();
......
[
{"name":"最小二乘回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["可解释性强","对多重共线性敏感"]},
{"name":"岭回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["抗多重共线性","模型稳定"]},
{"name":"套索回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["特征选择","模型稀疏"]},
{"name":"多项式回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["拟合弯曲关系","易过拟合"]},
{"name":"支持向量机回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"偏小样本","complexity":"复杂","property":["小样本表现好","对参数敏感"]},
{"name":"BP神经网络","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["表达能力强","可解释性弱"]},
{"name":"梯度提升树","task":["回归","分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["精度高","对噪声敏感"]},
{"name":"移动平均法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["平滑波动","对突变反应慢"]},
{"name":"指数平滑法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["重视近期数据","适合短期预测"]},
{"name":"自回归模型(AR)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["依赖历史值","要求平稳"]},
{"name":"滑动平均模型(MA)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["刻画随机扰动","短期效果好"]},
{"name":"自回归滑动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["综合AR和MA","预测能力强"]},
{"name":"差分自回归移动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["处理非平稳序列","建模步骤多"]},
{"name":"灰色模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"小样本","complexity":"简单","property":["小样本适用","抗随机性弱"]},
{"name":"决策树","task":["分类","决策"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"简单","property":["结构直观","易过拟合"]},
{"name":"随机森林","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["稳定性高","计算量大"]},
{"name":"自适应增强算法","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["关注难样本","对噪声敏感"]},
{"name":"判别分析","task":["分类"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["模型简洁","分布假设强"]},
{"name":"二分类逻辑回归","task":["分类","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["概率输出","可解释性好"]},
{"name":"皮尔逊相关分析","task":["相关"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["衡量线性关系","对异常值敏感"]},
{"name":"斯皮尔曼相关分析","task":["相关"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["基于秩次","对异常值不敏感"]},
{"name":"独立样本t检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["比较均值差异","要求正态性"]},
{"name":"正态检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["检验分布形态","对样本量敏感"]},
{"name":"K-均值聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["速度快","对初始中心敏感"]},
{"name":"层次聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"小样本","complexity":"复杂","property":["结构直观","计算量大"]},
{"name":"因子分析","task":["降维","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["提取潜在因子","解释性强"]},
{"name":"主成分分析","task":["降维"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["信息压缩","可解释性弱"]},
{"name":"优劣解距离法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["结果直观","依赖权重"]},
{"name":"秩和比评价法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["计算简单","信息损失多"]},
{"name":"模糊综合评价","task":["评价","排序"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"复杂","property":["处理模糊信息","主观性强"]},
{"name":"数据包络分析(CCR)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬不变","适合同规模对象"]},
{"name":"数据包络分析(BCC)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬可变","区分技术效率"]},
{"name":"柯布-道格拉斯生产函数","task":["效率","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["形式简单","函数假设强"]}
]
算法标签体系简要说明
通过标签对算法的适用场景和特性进行结构化描述,用于支持算法自动推荐、条件筛选和规则匹配。
任务类型:说明算法能解决的问题,如预测、回归、分类、排序、聚类、相关、检验、降维、评价、效率等。
数据类型:区分是否为时间序列数据。
关系形式:描述模型刻画关系的方式,包括线性、非线性或不限。
样本规模:表示算法对样本数量的适应程度,如小样本或不限。
复杂度:表示算法实现和计算难度,分为简单或复杂。
通过这些标签,可以将用户需求与算法能力快速匹配,实现智能推荐与筛选。
样本很小、特征少 → 优先简单模型
特征多、关系明显非线性 → 偏向复杂模型
\ No newline at end of file
{"prompt":"促销支出和销售量之间是不是存在线性关系?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"哪些地区的实际销售量和模型预测差距最大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"这个模型是否适合长期指导促销预算分配,还是只适合当前样本?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"这几个指标里,哪个和 GDP 增速关系最明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"固定资产投资增速和基础设施投资增速的变化是不是经常很相似?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"当固定资产投资和基础设施投资在大多数样本里都高度同步时,用它们同时预测 GDP,会不会影响结果的稳定性?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"这几个指标里,哪些对 GDP 增速影响最明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"如果只保留对 GDP 真正有用的指标,哪些可以不要?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"在多个指标一起影响 GDP 的情况下,能不能自动挑出最关键的指标,其它影响很小的就忽略掉?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"职位级别越高,薪资是不是涨得越来越快?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"职位从低级到高级,薪资增长是不是不是匀速的,而是后面涨得更猛?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"如果薪资和级别之间是“越往后涨得越快”的弯曲关系,用简单直线会不会不准,需要用能拟合弯曲关系的方法?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"这些指标和 GDP 同比之间的关系,看起来是不是不太像一条直线?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"在样本不多、波动又很大的情况下,用简单方法预测 GDP 会不会不准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"如果数据量不大、关系又比较复杂,有没有一种方法在小样本下也能学到这种“弯弯曲曲”的关系来做预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"人力成本和原材料成本变化,对收益增长率影响明显吗?中等问题:","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"当人力成本、原材料成本一点点变化时,收益的变化是不是有时候不太规律、很难用直线说明?","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"如果收益和成本之间的关系很复杂、变化不规则,用简单公式说不清,那有没有办法直接从数据里学出这种复杂关系来做预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"这些信息里,哪些最容易看出一个人会不会违约?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"有的人单看某一项数据好像没问题,但放在一起看却变成高风险,这是怎么回事?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"如果判断违约要同时看很多条件、而且关系还挺复杂,有没有一种办法能把这些情况组合起来,尽量判断得更准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"每个月的销售额大概是往上走的,下一月大概会是多少?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"有时候某个月突然高一点或低一点,这种波动能不能“平滑”一下再看趋势?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"如果我更关心整体走势而不是某个月的突然变化,有没有办法把这些起伏压一压,再用来预测下个月的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"最近几年的销售量,对预测下一年的影响是不是更大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"早些年的数据和最近的数据,预测时是不是应该更看重新的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"如果我主要想做短期预测,能不能让模型更“偏向”最近的数据来判断未来的销售量?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"这个月的销售量,会不会主要受前几个月的影响?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"如果前几个月卖得多,这个月一般也会偏多吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"能不能只靠过去几个月的销售量,来推算下一个月大概能卖多少?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"有些月份产能利用率突然高一点或低一点,是不是偶然情况造成的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"这些突然的波动,会不会影响后面几个月的产能利用率?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"如果主要是一些“随机起伏”在影响数据,能不能专门把这些波动考虑进去,用来做短期预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"这个月的产量,会不会主要受前几个月产量的影响?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"有时候产量突然高一点或低一点,这种波动会不会影响后面的走势?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"如果既有“跟着过去走的规律”,又有一些偶然波动,能不能同时把这两种情况一起考虑来预测下个月的产量?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"销售额一直在往上走,是不是每个月都在增长?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"如果一直这样上涨,用原来的数据直接预测,会不会不太准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"要是数据本身一直在变、不是稳定水平,能不能先把“变化幅度”拿出来,再用它来预测后面的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"只有这么几年数据,也能大概看出以后会怎么涨吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"数据不多、还有点波动,用常见方法会不会不太准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"要是数据本身一直在变、不是稳定水平,能不能先把“变化幅度”拿出来,再用它来预测后面的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"看这些条件,大概能不能直接判断一个供应商算不算重要?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"是不是可以一步步按条件来筛,比如先看产量,再看品质、服务?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"能不能把这种判断过程整理成一套清楚的规则,让系统自己照着规则给供应商分类?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"看这些信息,能不能大概判断一个员工会不会离职?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"单看某一个条件有时不准,是不是要把很多条件一起看才靠谱?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"如果判断离职要考虑很多因素、而且关系又挺复杂,有没有一种办法多从不同角度一起判断,结果会更稳一些?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"看这些指标,能不能大概分出哪些企业信用好、哪些一般?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"有些企业看起来条件差不多,但结果却不一样,这是为什么?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"如果有些企业特别难判断,能不能让系统多关注这些“容易分错”的情况,把分类做得更准一点?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"看这些指标,能不能大概分出哪些企业是正常的,哪些是有风险的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"这些企业的数据,好像正常的和有风险的在数值上有点区别,是不是能找出一个大致的分界线?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"能不能根据这些指标,总结出一套“长得像这样的大多是正常、像那样的大多是风险”的判断方法,让系统自动来分?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"能不能根据年龄、性别和收入,大概判断一个人会不会想买这个产品?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"这些条件变化时,购买的可能性是变大还是变小?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"能不能不只告诉我“会不会买”,还能告诉我“有多大概率会买”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"工作时间多一点,销售额是不是一般也会高一点?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"工作时间、销售额和客户满意度之间,是不是有一起变化的情况?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"能不能用一个数字,来表示这几个指标之间“关系有多紧密”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"身高高一点的学生,体重是不是一般也更大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"把学生按身高、体重、肺活量从小到大排个顺序,这些顺序会不会差不多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"就算有个别学生数据特别高或特别低,能不能还能判断这些指标之间是不是大致一起升或一起降?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"方式A和方式B,哪种卖得更多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"两种方式的平均销售额,是不是差得挺明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"这种差别是真的存在,还是只是样本刚好不一样造成的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"这些胆固醇数据,看起来是不是大多集中在一个范围里?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"这些数值是“中间多、两头少”的那种分布吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"能不能判断这些数据是不是符合常见的那种“钟形分布”,而不是乱七八糟的形状?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"这些顾客,大概能分成几类消费水平不一样的人?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"消费金额和购买次数差不多的顾客,是不是可以归到一组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"能不能自动把顾客按“花钱多少、买得多不多”分成几群,方便我区别对待?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"这些用户里,活跃程度差不多的人能不能分成几组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"发帖、评论、点赞、粉丝都差不多的用户,是不是可以归为一类?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"能不能一步步把用户按“越来越像”的程度分组,让我看到他们是怎么慢慢分成几类的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"这么多经济指标,看起来都挺相关的,是不是有点重复?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"能不能把这些指标归成几类,比如“工业类”“消费类”“投资类”这种?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"能不能用少数几个“综合指标”,来代替这一大堆原始数据,还能大致反映地区的经济情况?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"有没有一两个指标,就已经能大概看出整体水平高不高?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"能不能把这些指标按“差不多的放一类”分成几组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"能不能用更少的几个“综合指标”,来代表现在这一大堆数据,方便比较和分析?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"这些煤矿里,哪个整体情况最好、哪个最差?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"同时看粉尘、二氧化硫和患病率,怎么综合判断一个煤矿的好坏?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"能不能按“离最好情况有多远、离最差情况有多远”,给每个煤矿排个名?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"这些行业里,整体表现最好的是哪个?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"如果把每个指标都排个名,再综合起来,会不会更好比较?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"能不能先把各个指标变成“名次”,再用这些名次来给行业做一个总体排序?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"这些能力里,哪几项看起来评价最好?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"有些评价不是非好即坏,这种“介于中间”的情况怎么一起算?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"能不能把“非常好、好、一般、比较不好、非常不好”这种模糊评价,综合成一个总体结果来排序?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"这些地区里,哪几个看起来投入多、产出也多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"有的地区投入差不多,但成果差很多,这是为什么?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"能不能在“投入”和“产出”一起考虑的情况下,判断哪些地区用同样的资源干得最有效率?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"这些地区里,哪些看起来用资源用得最划算?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"有的地方投入不算多,但成果不错,是不是方法更高效?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"在考虑不同地区规模不一样的情况下,能不能分别看“做事本身的效率”和“规模带来的影响”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"多投点钱或多用点人,产量是不是一般就会多一些?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
{"prompt":"是多加资本更有用,还是多加劳动力更有用?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
{"prompt":"能不能用一个简单的公式,来说明“资本和劳动力一起是怎么影响产量的”?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment