Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
C
ciecc-agent
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wangning
ciecc-agent
Commits
6c04f4ff
Commit
6c04f4ff
authored
Jan 21, 2026
by
wangning
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix 智能体知识库 问题
parent
2c8526bc
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
183 additions
and
26 deletions
+183
-26
workspace.xml
.idea/workspace.xml
+27
-24
ChatServiceImpl.java
...pss/server/agent/service/chatService/ChatServiceImpl.java
+4
-1
ChatSessionManager.java
...rver/agent/service/sessionService/ChatSessionManager.java
+3
-1
algo_knowledge1.jsonl
.../resources/testcases/algo_knowledge/algo_knowledge1.jsonl
+0
-0
algo_knowledge2.jsonl
.../resources/testcases/algo_knowledge/algo_knowledge2.jsonl
+0
-0
algo_knowledge3.jsonl
.../resources/testcases/algo_knowledge/algo_knowledge3.jsonl
+0
-0
algo_knowledge4.jsonl
.../resources/testcases/algo_knowledge/algo_knowledge4.jsonl
+47
-0
suggest_algorithm.jsonl
...es/testcases/algo_suggest_request/suggest_algorithm.jsonl
+0
-0
suggest_algorithm1.jsonl
...s/testcases/algo_suggest_request/suggest_algorithm1.jsonl
+102
-0
suggest_algorithm_bak.jsonl
...estcases/algo_suggest_request/suggest_algorithm_bak.jsonl
+0
-0
No files found.
.idea/workspace.xml
View file @
6c04f4ff
...
...
@@ -4,29 +4,17 @@
<option
name=
"autoReloadType"
value=
"SELECTIVE"
/>
</component>
<component
name=
"ChangeListManager"
>
<list
default=
"true"
id=
"26f8285c-12a3-40dc-b957-23c37b8f3c67"
name=
"Changes"
comment=
""
>
<change
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/auth/AuthInterceptorConfiguration.java"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260118"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/algo_suggest_bak260119"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge1.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge2.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge3.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/default.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm_bak.jsonl"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/test_result/res1.xlsx"
afterDir=
"false"
/>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/test_result/result.xlsx"
afterDir=
"false"
/>
<list
default=
"true"
id=
"26f8285c-12a3-40dc-b957-23c37b8f3c67"
name=
"Changes"
comment=
"fix"
>
<change
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge4.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/.idea/workspace.xml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/.idea/workspace.xml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/response/ResponseMessage.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/domain/response/ResponseMessage.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/handler/IntentTool.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/handler/IntentTool.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/utils/DataSummaryUtil.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/utils/DataSummaryUtil.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager.java"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager.java"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/application-wn.yml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/application-wn.yml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/mapper/DaAgentMessageMapper.xml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/mybatis/mapper/DaAgentMessageMapper.xml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/mapper/DaAgentSessionMapper.xml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/mybatis/mapper/DaAgentSessionMapper.xml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/mapper/ResultMapper.xml"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/mybatis/mapper/ResultMapper.xml"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/promptwords/0_1.txt"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/promptwords/0_1.txt"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge1.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge1.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge2.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge2.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge3.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_knowledge/algo_knowledge3.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm.jsonl"
afterDir=
"false"
/>
<change
beforePath=
"$PROJECT_DIR$/src/main/resources/testcases/suggest_algorithm_bak.jsonl"
beforeDir=
"false"
afterPath=
"$PROJECT_DIR$/src/main/resources/testcases/algo_suggest_request/suggest_algorithm_bak.jsonl"
afterDir=
"false"
/>
</list>
<option
name=
"SHOW_DIALOG"
value=
"false"
/>
<option
name=
"HIGHLIGHT_CONFLICTS"
value=
"true"
/>
...
...
@@ -52,10 +40,10 @@
"RunOnceActivity.ShowReadmeOnStart": "true",
"RunOnceActivity.TerminalTabsStorage.copyFrom.TerminalArrangementManager.252": "true",
"RunOnceActivity.git.unshallow": "true",
"Spring Boot.Application.executor": "
Run
",
"Spring Boot.Application.executor": "
Debug
",
"git-widget-placeholder": "master",
"kotlin-language-version-configured": "true",
"last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/
test_resul
t",
"last_opened_file_path": "D:/projects/ciecc-agent/src/main/resources/testcases/
algo_suggest_reques
t",
"project.structure.last.edited": "Project",
"project.structure.proportion": "0.15",
"project.structure.side.proportion": "0.21954022",
...
...
@@ -64,13 +52,15 @@
}]]>
</component>
<component
name=
"RecentsManager"
>
<key
name=
"CopyFile.RECENT_KEYS"
>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\
test_resul
t"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\
algo_suggest_reques
t"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\test_result"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\promptwords"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\java\pro\spss\server\agent"
/>
</key>
<key
name=
"MoveFile.RECENT_KEYS"
>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_suggest_request"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases\algo_knowledge"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\testcases"
/>
<recent
name=
"D:\projects\ciecc-agent\src\main\resources\mybatis"
/>
</key>
...
...
@@ -111,8 +101,21 @@
<option
name=
"presentableId"
value=
"Default"
/>
<updated>
1768553899700
</updated>
</task>
<task
id=
"LOCAL-00001"
summary=
"fix"
>
<option
name=
"closed"
value=
"true"
/>
<created>
1768958069929
</created>
<option
name=
"number"
value=
"00001"
/>
<option
name=
"presentableId"
value=
"LOCAL-00001"
/>
<option
name=
"project"
value=
"LOCAL"
/>
<updated>
1768958069929
</updated>
</task>
<option
name=
"localTasksCounter"
value=
"2"
/>
<servers
/>
</component>
<component
name=
"VcsManagerConfiguration"
>
<MESSAGE
value=
"fix"
/>
<option
name=
"LAST_COMMIT_MESSAGE"
value=
"fix"
/>
</component>
<component
name=
"XDebuggerManager"
>
<watches-manager>
<configuration
name=
"SpringBootApplicationConfigurationType"
>
...
...
src/main/java/pro/spss/server/agent/service/chatService/ChatServiceImpl.java
View file @
6c04f4ff
...
...
@@ -6,6 +6,7 @@ import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.beans.factory.annotation.Value
;
import
org.springframework.scheduling.annotation.Async
;
import
org.springframework.stereotype.Service
;
import
pro.spss.server.agent.domain.constant.ChatConstants
;
import
pro.spss.server.agent.domain.enums.ChatStatusEnum
;
import
pro.spss.server.agent.domain.enums.ConversationStateEnum
;
import
pro.spss.server.agent.domain.enums.CreateWayEnum
;
...
...
@@ -81,6 +82,8 @@ public class ChatServiceImpl implements BaseChatService {
}
chatSessionManager
.
initSession
(
sessionId
,
CreateWayEnum
.
ALGO_FIRST
);
JSONArray
messages
=
chatSessionManager
.
getMessages
(
sessionId
);
messages
.
add
(
ChatConstants
.
createMessage
(
ChatConstants
.
ROLE_SYSTEM
,
initPrompt
));
sseService
.
sendMessage
(
ResponseMessageType
.
INIT
.
getType
(),
sessionId
,
userChatMessage
.
getToken
(),
initPrompt
);
return
true
;
...
...
@@ -127,7 +130,7 @@ public class ChatServiceImpl implements BaseChatService {
*/
private
ResponseMessage
executeTool
(
UserChatMessage
userChatMessage
,
RequestParams
requestParams
,
String
toolName
,
long
startTimestamp
)
{
String
sessionId
=
userChatMessage
.
getUserId
();
JSONArray
historyCopy
=
new
JSONArray
(
chatSessionManager
.
getMessages
(
sessionId
)
);
JSONArray
historyCopy
=
chatSessionManager
.
getMessages
(
sessionId
);
String
prompt
=
userChatMessage
.
getPrompt
();
ResponseMessage
responseMessage
=
conversationHandler
.
toolExecutor
(
requestParams
,
userChatMessage
,
toolName
,
historyCopy
,
prompt
);
responseMessage
.
setStartTimestamp
(
startTimestamp
);
...
...
src/main/java/pro/spss/server/agent/service/sessionService/ChatSessionManager.java
View file @
6c04f4ff
...
...
@@ -2,6 +2,7 @@ package pro.spss.server.agent.service.sessionService;
import
com.alibaba.fastjson2.JSONArray
;
import
lombok.Getter
;
import
org.springframework.beans.factory.annotation.Value
;
import
org.springframework.stereotype.Component
;
import
pro.spss.server.agent.domain.constant.ChatConstants
;
import
pro.spss.server.agent.domain.enums.ConversationStateEnum
;
...
...
@@ -25,7 +26,8 @@ public class ChatSessionManager {
}
public
void
initSession
(
String
sessionId
,
CreateWayEnum
createWay
)
{
JSONArray
messages
=
new
JSONArray
(
ChatConstants
.
SYSTEM_MESSAGES
);
JSONArray
messages
=
new
JSONArray
();
messages
.
add
(
ChatConstants
.
createMessage
(
ChatConstants
.
ROLE_SYSTEM
,
ChatConstants
.
WELCOME_MESSAGE
));
chatSessions
.
put
(
sessionId
,
messages
);
RequestParams
params
=
new
RequestParams
();
...
...
src/main/resources/testcases/algo_knowledge1.jsonl
→
src/main/resources/testcases/algo_knowledge
/algo_knowledge
1.jsonl
View file @
6c04f4ff
File moved
src/main/resources/testcases/algo_knowledge2.jsonl
→
src/main/resources/testcases/algo_knowledge
/algo_knowledge
2.jsonl
View file @
6c04f4ff
File moved
src/main/resources/testcases/algo_knowledge3.jsonl
→
src/main/resources/testcases/algo_knowledge
/algo_knowledge
3.jsonl
View file @
6c04f4ff
File moved
src/main/resources/testcases/algo_knowledge/algo_knowledge4.jsonl
0 → 100644
View file @
6c04f4ff
[
{"name":"最小二乘回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["可解释性强","对多重共线性敏感"]},
{"name":"岭回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["抗多重共线性","模型稳定"]},
{"name":"套索回归","task":["回归","预测"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["特征选择","模型稀疏"]},
{"name":"多项式回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["拟合弯曲关系","易过拟合"]},
{"name":"支持向量机回归","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"偏小样本","complexity":"复杂","property":["小样本表现好","对参数敏感"]},
{"name":"BP神经网络","task":["回归","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["表达能力强","可解释性弱"]},
{"name":"梯度提升树","task":["回归","分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["精度高","对噪声敏感"]},
{"name":"移动平均法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["平滑波动","对突变反应慢"]},
{"name":"指数平滑法","task":["预测"],"data":"时间序列","relation":"不限","sample":"偏小样本","complexity":"简单","property":["重视近期数据","适合短期预测"]},
{"name":"自回归模型(AR)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["依赖历史值","要求平稳"]},
{"name":"滑动平均模型(MA)","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["刻画随机扰动","短期效果好"]},
{"name":"自回归滑动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["综合AR和MA","预测能力强"]},
{"name":"差分自回归移动平均模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["处理非平稳序列","建模步骤多"]},
{"name":"灰色模型","task":["预测"],"data":"时间序列","relation":"线性","sample":"小样本","complexity":"简单","property":["小样本适用","抗随机性弱"]},
{"name":"决策树","task":["分类","决策"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"简单","property":["结构直观","易过拟合"]},
{"name":"随机森林","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["稳定性高","计算量大"]},
{"name":"自适应增强算法","task":["分类","预测"],"data":"非时间序列","relation":"非线性","sample":"不限","complexity":"复杂","property":["关注难样本","对噪声敏感"]},
{"name":"判别分析","task":["分类"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["模型简洁","分布假设强"]},
{"name":"二分类逻辑回归","task":["分类","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["概率输出","可解释性好"]},
{"name":"皮尔逊相关分析","task":["相关"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["衡量线性关系","对异常值敏感"]},
{"name":"斯皮尔曼相关分析","task":["相关"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["基于秩次","对异常值不敏感"]},
{"name":"独立样本t检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["比较均值差异","要求正态性"]},
{"name":"正态检验","task":["检验"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["检验分布形态","对样本量敏感"]},
{"name":"K-均值聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["速度快","对初始中心敏感"]},
{"name":"层次聚类","task":["聚类"],"data":"非时间序列","relation":"不限","sample":"小样本","complexity":"复杂","property":["结构直观","计算量大"]},
{"name":"因子分析","task":["降维","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["提取潜在因子","解释性强"]},
{"name":"主成分分析","task":["降维"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["信息压缩","可解释性弱"]},
{"name":"优劣解距离法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["结果直观","依赖权重"]},
{"name":"秩和比评价法","task":["排序","评价"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"简单","property":["计算简单","信息损失多"]},
{"name":"模糊综合评价","task":["评价","排序"],"data":"非时间序列","relation":"不限","sample":"不限","complexity":"复杂","property":["处理模糊信息","主观性强"]},
{"name":"数据包络分析(CCR)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬不变","适合同规模对象"]},
{"name":"数据包络分析(BCC)","task":["效率","评价"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"复杂","property":["规模报酬可变","区分技术效率"]},
{"name":"柯布-道格拉斯生产函数","task":["效率","回归"],"data":"非时间序列","relation":"线性","sample":"不限","complexity":"简单","property":["形式简单","函数假设强"]}
]
算法标签体系简要说明
通过标签对算法的适用场景和特性进行结构化描述,用于支持算法自动推荐、条件筛选和规则匹配。
任务类型:说明算法能解决的问题,如预测、回归、分类、排序、聚类、相关、检验、降维、评价、效率等。
数据类型:区分是否为时间序列数据。
关系形式:描述模型刻画关系的方式,包括线性、非线性或不限。
样本规模:表示算法对样本数量的适应程度,如小样本或不限。
复杂度:表示算法实现和计算难度,分为简单或复杂。
通过这些标签,可以将用户需求与算法能力快速匹配,实现智能推荐与筛选。
样本很小、特征少 → 优先简单模型
特征多、关系明显非线性 → 偏向复杂模型
\ No newline at end of file
src/main/resources/testcases/suggest_algorithm.jsonl
→
src/main/resources/testcases/
algo_suggest_request/
suggest_algorithm.jsonl
View file @
6c04f4ff
File moved
src/main/resources/testcases/algo_suggest_request/suggest_algorithm1.jsonl
0 → 100644
View file @
6c04f4ff
{"prompt":"促销支出和销售量之间是不是存在线性关系?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"哪些地区的实际销售量和模型预测差距最大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"这个模型是否适合长期指导促销预算分配,还是只适合当前样本?","dataId":"","confirm":false,"sessionId":"S1001","expected":"最小二乘回归"}
{"prompt":"这几个指标里,哪个和 GDP 增速关系最明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"固定资产投资增速和基础设施投资增速的变化是不是经常很相似?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"当固定资产投资和基础设施投资在大多数样本里都高度同步时,用它们同时预测 GDP,会不会影响结果的稳定性?","dataId":"","confirm":false,"sessionId":"S1001","expected":"岭回归"}
{"prompt":"这几个指标里,哪些对 GDP 增速影响最明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"如果只保留对 GDP 真正有用的指标,哪些可以不要?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"在多个指标一起影响 GDP 的情况下,能不能自动挑出最关键的指标,其它影响很小的就忽略掉?","dataId":"","confirm":false,"sessionId":"S1001","expected":"套索回归"}
{"prompt":"职位级别越高,薪资是不是涨得越来越快?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"职位从低级到高级,薪资增长是不是不是匀速的,而是后面涨得更猛?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"如果薪资和级别之间是“越往后涨得越快”的弯曲关系,用简单直线会不会不准,需要用能拟合弯曲关系的方法?","dataId":"","confirm":false,"sessionId":"S1001","expected":"多项式回归"}
{"prompt":"这些指标和 GDP 同比之间的关系,看起来是不是不太像一条直线?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"在样本不多、波动又很大的情况下,用简单方法预测 GDP 会不会不准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"如果数据量不大、关系又比较复杂,有没有一种方法在小样本下也能学到这种“弯弯曲曲”的关系来做预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"支持向量机回归"}
{"prompt":"人力成本和原材料成本变化,对收益增长率影响明显吗?中等问题:","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"当人力成本、原材料成本一点点变化时,收益的变化是不是有时候不太规律、很难用直线说明?","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"如果收益和成本之间的关系很复杂、变化不规则,用简单公式说不清,那有没有办法直接从数据里学出这种复杂关系来做预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"BP神经网络"}
{"prompt":"这些信息里,哪些最容易看出一个人会不会违约?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"有的人单看某一项数据好像没问题,但放在一起看却变成高风险,这是怎么回事?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"如果判断违约要同时看很多条件、而且关系还挺复杂,有没有一种办法能把这些情况组合起来,尽量判断得更准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"梯度提升树"}
{"prompt":"每个月的销售额大概是往上走的,下一月大概会是多少?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"有时候某个月突然高一点或低一点,这种波动能不能“平滑”一下再看趋势?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"如果我更关心整体走势而不是某个月的突然变化,有没有办法把这些起伏压一压,再用来预测下个月的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"移动平均法"}
{"prompt":"最近几年的销售量,对预测下一年的影响是不是更大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"早些年的数据和最近的数据,预测时是不是应该更看重新的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"如果我主要想做短期预测,能不能让模型更“偏向”最近的数据来判断未来的销售量?","dataId":"","confirm":false,"sessionId":"S1001","expected":"指数平滑法"}
{"prompt":"这个月的销售量,会不会主要受前几个月的影响?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"如果前几个月卖得多,这个月一般也会偏多吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"能不能只靠过去几个月的销售量,来推算下一个月大概能卖多少?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归模型(AR)"}
{"prompt":"有些月份产能利用率突然高一点或低一点,是不是偶然情况造成的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"这些突然的波动,会不会影响后面几个月的产能利用率?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"如果主要是一些“随机起伏”在影响数据,能不能专门把这些波动考虑进去,用来做短期预测?","dataId":"","confirm":false,"sessionId":"S1001","expected":"滑动平均模型(MA)"}
{"prompt":"这个月的产量,会不会主要受前几个月产量的影响?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"有时候产量突然高一点或低一点,这种波动会不会影响后面的走势?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"如果既有“跟着过去走的规律”,又有一些偶然波动,能不能同时把这两种情况一起考虑来预测下个月的产量?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自回归滑动平均模型"}
{"prompt":"销售额一直在往上走,是不是每个月都在增长?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"如果一直这样上涨,用原来的数据直接预测,会不会不太准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"要是数据本身一直在变、不是稳定水平,能不能先把“变化幅度”拿出来,再用它来预测后面的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"差分自回归移动平均模型"}
{"prompt":"只有这么几年数据,也能大概看出以后会怎么涨吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"数据不多、还有点波动,用常见方法会不会不太准?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"要是数据本身一直在变、不是稳定水平,能不能先把“变化幅度”拿出来,再用它来预测后面的销售额?","dataId":"","confirm":false,"sessionId":"S1001","expected":"灰色模型"}
{"prompt":"看这些条件,大概能不能直接判断一个供应商算不算重要?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"是不是可以一步步按条件来筛,比如先看产量,再看品质、服务?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"能不能把这种判断过程整理成一套清楚的规则,让系统自己照着规则给供应商分类?","dataId":"","confirm":false,"sessionId":"S1001","expected":"决策树"}
{"prompt":"看这些信息,能不能大概判断一个员工会不会离职?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"单看某一个条件有时不准,是不是要把很多条件一起看才靠谱?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"如果判断离职要考虑很多因素、而且关系又挺复杂,有没有一种办法多从不同角度一起判断,结果会更稳一些?","dataId":"","confirm":false,"sessionId":"S1001","expected":"随机森林"}
{"prompt":"看这些指标,能不能大概分出哪些企业信用好、哪些一般?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"有些企业看起来条件差不多,但结果却不一样,这是为什么?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"如果有些企业特别难判断,能不能让系统多关注这些“容易分错”的情况,把分类做得更准一点?","dataId":"","confirm":false,"sessionId":"S1001","expected":"自适应增强算法"}
{"prompt":"看这些指标,能不能大概分出哪些企业是正常的,哪些是有风险的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"这些企业的数据,好像正常的和有风险的在数值上有点区别,是不是能找出一个大致的分界线?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"能不能根据这些指标,总结出一套“长得像这样的大多是正常、像那样的大多是风险”的判断方法,让系统自动来分?","dataId":"","confirm":false,"sessionId":"S1001","expected":"判别分析"}
{"prompt":"能不能根据年龄、性别和收入,大概判断一个人会不会想买这个产品?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"这些条件变化时,购买的可能性是变大还是变小?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"能不能不只告诉我“会不会买”,还能告诉我“有多大概率会买”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"二分类逻辑回归"}
{"prompt":"工作时间多一点,销售额是不是一般也会高一点?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"工作时间、销售额和客户满意度之间,是不是有一起变化的情况?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"能不能用一个数字,来表示这几个指标之间“关系有多紧密”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"皮尔逊相关分析"}
{"prompt":"身高高一点的学生,体重是不是一般也更大?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"把学生按身高、体重、肺活量从小到大排个顺序,这些顺序会不会差不多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"就算有个别学生数据特别高或特别低,能不能还能判断这些指标之间是不是大致一起升或一起降?","dataId":"","confirm":false,"sessionId":"S1001","expected":"斯皮尔曼相关分析"}
{"prompt":"方式A和方式B,哪种卖得更多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"两种方式的平均销售额,是不是差得挺明显?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"这种差别是真的存在,还是只是样本刚好不一样造成的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"独立样本t检验"}
{"prompt":"这些胆固醇数据,看起来是不是大多集中在一个范围里?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"这些数值是“中间多、两头少”的那种分布吗?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"能不能判断这些数据是不是符合常见的那种“钟形分布”,而不是乱七八糟的形状?","dataId":"","confirm":false,"sessionId":"S1001","expected":"正态检验"}
{"prompt":"这些顾客,大概能分成几类消费水平不一样的人?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"消费金额和购买次数差不多的顾客,是不是可以归到一组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"能不能自动把顾客按“花钱多少、买得多不多”分成几群,方便我区别对待?","dataId":"","confirm":false,"sessionId":"S1001","expected":"K-均值聚类"}
{"prompt":"这些用户里,活跃程度差不多的人能不能分成几组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"发帖、评论、点赞、粉丝都差不多的用户,是不是可以归为一类?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"能不能一步步把用户按“越来越像”的程度分组,让我看到他们是怎么慢慢分成几类的?","dataId":"","confirm":false,"sessionId":"S1001","expected":"层次聚类"}
{"prompt":"这么多经济指标,看起来都挺相关的,是不是有点重复?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"能不能把这些指标归成几类,比如“工业类”“消费类”“投资类”这种?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"能不能用少数几个“综合指标”,来代替这一大堆原始数据,还能大致反映地区的经济情况?","dataId":"","confirm":false,"sessionId":"S1001","expected":"因子分析"}
{"prompt":"有没有一两个指标,就已经能大概看出整体水平高不高?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"能不能把这些指标按“差不多的放一类”分成几组?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"能不能用更少的几个“综合指标”,来代表现在这一大堆数据,方便比较和分析?","dataId":"","confirm":false,"sessionId":"S1001","expected":"主成分分析"}
{"prompt":"这些煤矿里,哪个整体情况最好、哪个最差?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"同时看粉尘、二氧化硫和患病率,怎么综合判断一个煤矿的好坏?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"能不能按“离最好情况有多远、离最差情况有多远”,给每个煤矿排个名?","dataId":"","confirm":false,"sessionId":"S1001","expected":"优劣解距离法"}
{"prompt":"这些行业里,整体表现最好的是哪个?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"如果把每个指标都排个名,再综合起来,会不会更好比较?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"能不能先把各个指标变成“名次”,再用这些名次来给行业做一个总体排序?","dataId":"","confirm":false,"sessionId":"S1001","expected":"秩和比评价法"}
{"prompt":"这些能力里,哪几项看起来评价最好?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"有些评价不是非好即坏,这种“介于中间”的情况怎么一起算?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"能不能把“非常好、好、一般、比较不好、非常不好”这种模糊评价,综合成一个总体结果来排序?","dataId":"","confirm":false,"sessionId":"S1001","expected":"模糊综合评价"}
{"prompt":"这些地区里,哪几个看起来投入多、产出也多?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"有的地区投入差不多,但成果差很多,这是为什么?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"能不能在“投入”和“产出”一起考虑的情况下,判断哪些地区用同样的资源干得最有效率?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(CCR)"}
{"prompt":"这些地区里,哪些看起来用资源用得最划算?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"有的地方投入不算多,但成果不错,是不是方法更高效?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"在考虑不同地区规模不一样的情况下,能不能分别看“做事本身的效率”和“规模带来的影响”?","dataId":"","confirm":false,"sessionId":"S1001","expected":"数据包络分析(BCC)"}
{"prompt":"多投点钱或多用点人,产量是不是一般就会多一些?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
{"prompt":"是多加资本更有用,还是多加劳动力更有用?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
{"prompt":"能不能用一个简单的公式,来说明“资本和劳动力一起是怎么影响产量的”?","dataId":"","confirm":false,"sessionId":"S1001","expected":""}
src/main/resources/testcases/suggest_algorithm_bak.jsonl
→
src/main/resources/testcases/
algo_suggest_request/
suggest_algorithm_bak.jsonl
View file @
6c04f4ff
File moved
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment